
GAMS Introduction

Erwin Kalvelagen

Amsterdam Optimization

GAMS: General Algebraic Modeling
System

• GAMS: Modeling Language and its
implementation

• Goal: concise specification of Math
Programming models
– Quick implementation of models

– Maintainable models

– Use of state-of-the-art solvers (Cplex, ….)

– Support for large scale models

– Support for linear and nonlinear models

History

• Developed at World Bank to achieve

– Self documenting models

– Quick turnaround when model changes

– Maintainability

– Solver independence

– Support for nonlinear models

– Automatic derivatives for NLP’s

– Initial versions developed in 1978-1979

GAMS: The Modelling Language

Sets
i canning plants / seattle, san-diego /
j markets / new-york, chicago, topeka / ;

Parameters

a(i) capacity of plant i in cases
/ seattle 350

san-diego 600 /

b(j) demand at market j in cases
/ new-york 325

chicago 300
topeka 275 / ;

Table d(i,j) distance in thousands of miles
new-york chicago topeka

seattle 2.5 1.7 1.8
san-diego 2.5 1.8 1.4 ;

Scalar f freight in dollars per case per thousand miles /90/ ;

Parameter c(i,j) transport cost in thousands of dollars per case ;

c(i,j) = f * d(i,j) / 1000 ;

Variables
x(i,j) shipment quantities in cases
z total transportation costs in thousands of dollars ;

Positive Variable x ;

Equations
cost define objective function
supply(i) observe supply limit at plant i
demand(j) satisfy demand at market j ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

Solve transport using lp minimizing z ;

Display x.l, x.m ;

Sets are used
for indexing

Parameters
don’t change
inside a solve

Decision
variables

Equations are declared and
then definedSolve calls external optimizer

Set Declarations

• Set elements are strings
• Even if declared as

– Set i /1*10/;
– Set i /1,2,3,4,5,6,7,8,9,10/;

• Sets can have explanatory text:
– Set y ‘years’ /year2000*year2010/;

• To get sequence number use ord()
• P(i) = ord(i);

• Parameters, equations are expressed in terms of
sets.

Set element names

• If contain blanks then need to be quoted

Set jx 'for use with X/XB variable' /
Imports
"Food,Seed & Industial"
Production
‘Paid Diversion’

/;

Explanatory text: these
quotes are not needed if
we had no / in the text

Double
quotes

Single quotes. This
can be important if
the string already

contains a single or
double quote.

A valid set element can
not contain both ‘ and “

Alias

• Often the same set is used in different index
positions. E.g.

• Parameter p(i,i);

• p(i,i) = 1; // assigns only diagonal

• Use Alias:
• Alias(i,j);

• Parameter p(i,j); // in declaration same as p(i,i)

• p(i,j) = 1; // assigns all i × j

Sub sets

• Subset:
• Set j(i)

• Hierarchy: start with supersets, then define subsets

• You can have a subset of a subset

• GAMS will check if elements are in superset (domain
checking)

1

2 sets

3 i0 /a,b,c,d/

4 i1(i0) /a,b,c/

5 i2(i1) /b,c,d/

**** $170

**** 170 Domain violation for element

6 ;

Multi-dimensional Sets

• Specification of multi-dimensional sets

sets
i /a,b,c,d/
j /1,2,3/
k(i,j) /

a.1
b.(2,3)
(c,d).(1,3)

/
;
display k;

---- 12 SET k

1 2 3

a YES

b YES YES

c YES YES

d YES YES

This is also
domain
checked

Multidimensional sets can not
be used as domain.

Dynamic Sets

• Calculate sets dynamically.

• A.k.a. assigned sets

• Dynamic sets can not be used as domains.
set i /i1*i5/;
alias(i,j);

set offdiag(i,j) 'exclude diagonal';
offdiag(i,j) = yes;
offdiag(i,i) = no;

display offdiag;

---- 8 SET offdiag exclude diagonal

i1 i2 i3 i4 i5

i1 YES YES YES YES

i2 YES YES YES YES

i3 YES YES YES YES

i4 YES YES YES YES

i5 YES YES YES YES

Parameters

• Can be entered as
• Scalar s ‘scalar parameter’ / 3.14/;
• Parameter p(i) ‘one dimensional parameter’ /

i1 2.5
i2 4.8

/;
• Table t(i,j) ‘tabular specification of data’

j1 j2 j3
i1 12 14
i2 8.5
;

• Assignment
p(“i2”) = 4.8;
t(i,j) = p(i) + 3;

The famous $ operator

• ‘Such that’ operator

• Used very often in GAMS models
– Assignment of parameters

– P(i,j)$(q(i,j)>0) = q(i,j);

– P(i,j) = q(i,j)$(q(i,j)>0);

– Note: these are different

– Assignment of sets

– Sum, prod, smax, smin, loop etc
– S = Sum((i,j)$(q(i,j)>0),q(i,j));

– In equation definitions (discussed later…)

Assignment: Lhs $ vs rhs $

set i /i1,i2/;
alias(i,j);

parameter p(i,j);

parameter q(i,j);
q(i,j) = -2;
q(i,i) = 2;

p(i,j) = 1;
P(i,j)$(q(i,j)>0) = q(i,j);
display p;

p(i,j) = 1;
P(i,j) = q(i,j)$(q(i,j)>0);
display p;

---- 12 PARAMETER p

i1 i2

i1 2.000 1.000

i2 1.000 2.000

---- 15 PARAMETER p

i1 i2

i1 2.000

i2 2.000

Parallel Assignment

• Parallel assignment:

– P(i,j) = xxx;

– No loop needed

• With loop

• Sometimes beginners use loops too much

Loop((i,j),
p(i,j)=xxx;

);

Sparse storage

• Only nonzero elements are stored

– Zero and ‘do not exist’ is identical in GAMS

set i/ i1,i2/;

alias (i,j);

table t(i,j)

i1 i2

i1 1

i2 3

;

scalar n1,n2;

n1 = card(t);

n2 = sum((i,j)$t(i,j),1);

display n1,n2;

Domain Checking

• Makes models more reliable

• Like strict type checking in a programming language

1 set

2 i /a,b,c/

3 j /d,e,f/

4 ;

5

6 parameter p(i);

7 p(i) = 1;

8 p(j) = 2;

**** $171

**** 171 Domain violation for set

9 p('g') = 3;

**** $170

**** 170 Domain violation for element

Bypassing domain checking

• Use * as set to prevent domain checking

– Parameter p(*);

• This is not often needed, sometimes useful to
save a few key-strokes.

table unitdata(i,*)

capacity minoutput mindown minup inistate coefa coefb coefc chot ccold tcool

* MW MW H H H $/h $/MWh $/MW^2h $/h $/h h

unit1 455 150 8 8 8 1000 16.19 0.00048 4500 9000 5

unit2 455 150 8 8 8 970 17.26 0.00031 5000 10000 5

unit3 130 20 5 5 -5 700 16.60 0.00200 550 1100 4

unit4 130 20 5 5 -5 680 16.50 0.00211 560 1120 4

unit5 162 25 6 6 -6 450 19.70 0.00398 900 1800 4

unit6 80 20 3 3 -3 370 22.26 0.00712 170 340 2

unit7 85 25 3 3 -3 480 27.74 0.00079 260 520 2

unit8 55 10 1 1 -1 660 25.92 0.00413 30 60 0

unit9 55 10 1 1 -1 665 27.27 0.00222 30 60 0

unit10 55 10 1 1 -1 670 27.79 0.00173 30 60 0

;

Data Manipulation

• Operate on parameters

• Often large part of the complete model

• Operations:

– Sum,prod,smax,smin,

– Functions: sin,cos,max,min,sqr,sqrt etc

– $ conditions

– If, loop

– For, while (not used much)

Checks

• Abort allows to add checks:

Variables

• Declaration:
– Free variable x(i); // default!
– Positive variable y(i,j); // this means non-negative
– Binary variable z;
– Integer variable d;
– Can be declared in steps, as long as no contradiction:

• Variable x,y,z; Positive Variable x(i);

• For MIP/MINLP models extra variable types:
– Sos1, sos2, semicont, semiint

• Free variable is the default. Most other systems
have positive variables as the default.

Variables (2)

• x.lo=1; sets lower bound

• Y.up(i)=100; sets upper bound

• Z.L is level

• X.M is marginal (reduced cost, dual)

• Z.Scale sets scale for NLP

• Z.prior sets priorities for MIP

• X.fx=1 is shorthand for x.lo=1;x.up=1;x.L=1;
(cannot by used in rhs)

Equations

• Declaration:
– Equation e(i) ‘some equation’;

• Definition:
– e(i).. sum(j, x(i,j)) =e= 1;

• This generates card(i) equations
• $ conditions:

– e(i)$subset(i).. sum(j, x(i,j)) =e= 1;

• Equation types
• =E=, =L=, =G=
• =X= (external functions)
• =N= (nonbinding, not used much)
• =C= (conic equation, not used much)

Maps

identical to

A map is a filter

In the rhs both i,j and lt can be used:

distance(lt(i,j))..
d(lt) =e= sqrt(sqr[x(i)-x(j)]+sqr[y(i)-y(j)]);

Parameter vs variable

• Nonlinear

• Linear

Variable y;
e.. x =e= sqr(y);

Parameter p;
e.. x =e= sqr(p);

Variable y;
e.. x =e= sqr(y.L);

Special Values

• INF
– Infinity: often used for bounds

• -INF
– Minus infinity: mostly for bounds

• NA
– Not available: not much used

• EPS
– Numerically zero
– Marginal is zero but nonbasic → EPS

• UNDF
– Eg result if division by zero

1 parameter x,y;

2 x=0;

3 y=1/x;

4 display y;

**** Exec Error at line 3: division by zero (0)

---- 4 PARAMETER y = UNDF

Model statement

• Model m /all/;

• Model m /cost,supply,demand/;

• Special syntax for MCP models to indicate
complementarity pairs:

– Model m /demand.Qd, Psupply.Qs, Equilibrium.P/

Solve Statement

• Solve m minimizing z using lp;
• GAMS uses objective variable instead of objective

function
• Model types

– LP: linear programming
– NLP: nonlinear programming
– DNLP: NLP with discontinuities (max,min,abs)
– MIP: linear mixed integer, RMIP: relaxed MIP
– MINLP: nlp with integer vars, RMINP: relaxed minlp
– QCP,MIQCP: quadratically constrained
– CNS: constrained non-linear system (square)
– MCP: mixed complementarity
– MPEQ: NLP with complementarity conditions

GAMS Flow of Control

Solvers

• To select solver

– Option lp=cplex;

– Command line parameter: lp=cplex

– Change defaults (IDE or GAMSINST)

• Switching solvers is easy and cheap

Linear Programming

• Very large models can be solved reliably
• Primal and Dual Simplex and interior point (barrier)

methods.
– Free solvers:

• BDMLP
• COINGLPK
• COINCBC

– CPLEX (Ilog)
• commercial, parallel, state-of-the-art, simplex+barrier

– XPRESS (Fair Isaac)
• commercial, parallel, state-of-the-art, simplex+barrier

– MOSEK
• Very good parallel interior point

– XA
• cheaper alternative

Linear Programming (2)

• Many additional algorithms determine success
– Scaling

– Presolver (reduce size of model)

– Crash (find good initial basis)

– Crossover (interior point solution → basic solution)

• Very large models (> 10 million
nonzero elements) require
much memory

• 64 bit architecture can help then
(available on pc’s, so no need for
super computers like this Cray C90)

Performance improvement

• Indus89 model ran for 6-7
hours on a DEC MicroVax in
1990 using MINOS as LP
solver

• This model runs now with
Cplex on a laptop well within
1 second

LP Modeling

• Almost anything you throw at a good LP solver
will solve without a problem

• If presolver reduces the model a lot or if you
have many x.fx(i)=0 then revisit equations and
exclude unwanted variables using $
conditions.

LP Modeling (2)

• Don’t reduce #vars,#equs if this increases the
number of nonzero elements significantly

e(k).. x(k) =L= sum(j, y(j))
e(k).. x(k) =L= ysum;
Ydef.. ysum =e= sum(j,y(j));

K equations
K+J variables
K×(J+1) nonzeroes

K+1 equations
K+J+1 variables
2K+J+1 nonzeroes

e.g.
100 equations
200 variables
10100 nonzeroes

e.g.
101 equations
201 variables
301 nonzeroes

LP Listing File

• Part 1: echo listing
of the model.
Occasionally useful
to look at syntax
errors or run time
errors.

• The compilation
time is usually small

21 Sets

22 i canning plants / seattle, san-diego /

23 j markets / new-york, chicago, topeka / ;

24

25 Parameters

26

27 a(i) capacity of plant i in cases

28 / seattle 350

29 san-diego 600 /

30

31 b(j) demand at market j in cases

32 / new-york 325

33 chicago 300

34 topeka 275 / ;

COMPILATION TIME = 0.016 SECONDS

LP Listing File (2)

• Part 2: equation listing
– Shows first 3 equations for each block
– INFES is for initial point, so don’t worry
– Note how explanatory text is carried along
– Especially useful for difficult equations with leads and lags
– More or less can be shown with OPTION LIMROW=nnn;

---- demand =G= satisfy demand at market j

demand(new-york).. x(seattle,new-york) + x(san-diego,new-york) =G= 325 ; (LHS = 0, INFES = 325 ****)

demand(chicago).. x(seattle,chicago) + x(san-diego,chicago) =G= 300 ; (LHS = 0, INFES = 300 ****)

demand(topeka).. x(seattle,topeka) + x(san-diego,topeka) =G= 275 ; (LHS = 0, INFES = 275 ****)

This was generated by: demand(j) .. sum(i, x(i,j)) =g= b(j) ;

LP Listing File (3)

• Part 3: Column Listing

– Shows variables appearing
in the model and where

– First 3 per block are shown

– Can be changed with
OPTION LIMCOL=nnn;

– By definition feasible
(GAMS will project levels
back on their bounds)

---- x shipment quantities in cases

x(seattle,new-york)

(.LO, .L, .UP, .M = 0, 0, +INF, 0)

-0.225 cost

1 supply(seattle)

1 demand(new-york)

x(seattle,chicago)

(.LO, .L, .UP, .M = 0, 0, +INF, 0)

-0.153 cost

1 supply(seattle)

1 demand(chicago)

x(seattle,topeka)

(.LO, .L, .UP, .M = 0, 0, +INF, 0)

-0.162 cost

1 supply(seattle)

1 demand(topeka)

REMAINING 3 ENTRIES SKIPPED

LP Listing File (4)

• Part 4
– Model statistics
– Model generation time: time spent in SOLVE statement

generating the model
– Execution time: time spent in GAMS executing all

statements up to the point where we call the solver

MODEL STATISTICS

BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS 6

BLOCKS OF VARIABLES 2 SINGLE VARIABLES 7

NON ZERO ELEMENTS 19

GENERATION TIME = 0.000 SECONDS

EXECUTION TIME = 0.000 SECONDS

LP Listing File (5)

• Solve info

– Search for ‘S O L’

– Solver/model status can also be interrogated
programmatically

– Resource usage, limit means time used, limit

S O L V E S U M M A R Y

MODEL transport OBJECTIVE z

TYPE LP DIRECTION MINIMIZE

SOLVER CPLEX FROM LINE 66

**** SOLVER STATUS 1 NORMAL COMPLETION

**** MODEL STATUS 1 OPTIMAL

**** OBJECTIVE VALUE 153.6750

RESOURCE USAGE, LIMIT 0.063 1000.000

ITERATION COUNT, LIMIT 4 10000

Model/Solver Status

MODEL STATUS CODE DESCRIPTION

1 Optimal

2 Locally Optimal

3 Unbounded

4 Infeasible

5 Locally Infeasible

6 Intermediate Infeasible

7 Intermediate Nonoptimal

8 Integer Solution

9 Intermediate Non-Integer

10 Integer Infeasible

11 Licensing Problems - No Solution

12 Error Unknown

13 Error No Solution

14 No Solution Returned

15 Solved Unique

16 Solved

17 Solved Singular

18 Unbounded - No Solution

19 Infeasible - No Solution

SOLVER STATUS CODE DESCRIPTION

1 Normal Completion

2 Iteration Interrupt

3 Resource Interrupt

4 Terminated by Solver

5 Evaluation Error Limit

6 Capability Problems

7 Licensing Problems

8 User Interrupt

9 Error Setup Failure

10 Error Solver Failure

11 Error Internal Solver Error

12 Solve Processing Skipped

13 Error System Failure

Model/Solver Status (2)

abort$(m.solvestat <> 1) 'bad solvestat';

LP Listing file (6)

• Part 6: messages from solver

ILOG CPLEX BETA 1Apr 22.7.0 WEX 3927.4246 WEI x86_64/MS Windows

Cplex 11.0.1, GAMS Link 34

Optimal solution found.

Objective : 153.675000

More information can be requested by OPTION SYSOUT=on;

Note: this part is especially important if something goes wrong with the solve.
In some cases you also need to inspect the log file (some solvers don’t echo
all important messages to the listing file).

LP Listing File (7)

• Part 7: Solution listing

– Can be suppressed with m.solprint=0;

---- EQU demand satisfy demand at market j

LOWER LEVEL UPPER MARGINAL

new-york 325.0000 325.0000 +INF 0.2250

chicago 300.0000 300.0000 +INF 0.1530

topeka 275.0000 275.0000 +INF 0.1260

---- VAR x shipment quantities in cases

LOWER LEVEL UPPER MARGINAL

seattle .new-york . 50.0000 +INF .

seattle .chicago . 300.0000 +INF .

seattle .topeka . . +INF 0.0360

san-diego.new-york . 275.0000 +INF .

san-diego.chicago . . +INF 0.0090

san-diego.topeka . 275.0000 +INF .

Solver Option File

• Write file solver.opt

• Tell solver to use it: m.optfile=1;

• Option file can be written from GAMS

$onecho > cplex.opt
lpmethod 4
$offecho

Model m/all/;
m.optfile=1;
Solve m minimizing z using lp;

--- Executing CPLEX: elapsed 0:00:00.007

ILOG CPLEX May 1, 2008 22.7.1 WIN 3927.4700 VIS x86/MS Windows

Cplex 11.0.1, GAMS Link 34

Reading parameter(s) from "C:\projects\test\cplex.opt"

>> lpmethod 4

Finished reading from "C:\projects\test\cplex.opt"

Integer Programming

• Combinatorial in nature

• Much progress in solving large models

• Modeling requires

– Skill

– Running many different formulations: this is
where modeling systems shine

– Luck

• Often need to implement heuristics

MIP Solvers

• Free solvers:

– Bdmlp, coinglpk, coincbc,coinscip

• Commercial solvers:

– Cplex, Xpress (market leaders)

– XA, Mosek

MIP Modeling

• Difficult, not much automated

• Many MINLPs can be linearized into MIPs.

• Eg

can be formulated as:

}1,0{,,  yxyxz

]1,0[},1,0{,

1









zyx

yxz

yz

xz

Nonlinear Programming

• Large scale, sparse, local solvers:
– Conopt (ARKI)

• Reliable SQP, 2nd derivatives
• Scaling, presolve, good diagnostics
• Often works without options

– Minos (Stanford)
• Older augmented Lagrangian code
• Good for models that are mildly nonlinear

– Snopt (Stanford, UCSD)
• SQP based code
• Inherits much from Minos but different algorithm

– Knitro (Ziena)
• Interior point NLP
• Sometimes this works very well on large problems

– CoinIpOpt (IBM, CoinOR, CMU)
• Free, interior point

Special Nonlinear Programming

• PathNLP
– Reformulate to MCP

• BARON
– Global solver
– Only for small models

• Other global solvers:
– LGO, OQNLP, Lindoglobal

• Mosek
– For convex NLP and QCP only

• Cplex
– For QCP

MINLP Solvers

• Free Solvers

– CoinBonmin

• Dicopt

• SBB

• AlphaEcp

• Baron, lgo, oqnlp (global)

NLP Modeling

• Models fail mostly because of:

– Poor starting point

• Specify X.L(i)=xx; for all important nonlinear variables

– Poor scaling

• You can manually scale model use x.scale, eq.scale

– Poorly chosen bounds

• Choose x.lo,x.up so that functions can be evaluated

• Note: changing bounds can change initial
point

NLP Modeling

• Minimize nonlinearity

• Measure

– --- 429 nl-code 30 nl-non-zeroes

• Example:

e1.. Z =e= log[sum(i,x(i))] e1.. z =e= log(y);
e2.. y =e= sum(i,x(i));

X(i) is
non linear

X(i) is
linear

Additional advantage:
We can protect log by
y.lo=0.001;

Functions

Function Allowed In
equations

Notes

abs DNLP Non-differentiable, use alternative: variable splitting

execseed no Seed for random number generation. Can also be set.

Exp,log,log2,log10 NLP Add lowerbound for log

Ifthen(cond,x,y) DNLP Non-differentiable, use binary variables

Min(x,y),max(x,y,z), smin(i,..),
smax(i,…)

DNLP Non-differentiable, use alternative formulation

Prod NLP

Sum LP/NLP

Round, trunc, fract no

Sqr,sqrt,power Yes Protect sqrt with lowerbound

Power(x,y), x**y NLP Power: integer y
x**y = exp(y*log(x)), add x.lo=0.001;

Cos,sin,tan,arccos,arcsin,arcta
n,arctan2,cosh,sinh,tanh,

NLP

Functions (2)

Function Allowed In
equations

Notes

Fact no In equations use gamma

Gamma,Beta,BetaReg,Gamma
Reg, LogGamma,LogBeta

DNLP

Binomial(x,y) NLP Generalized binomial function

Errorf NLP Error function. Inverse not available: use equation: z
=e= errorf(x) to find x.

Mod No

Normal, uniform, uniformint No Random number generation

Pi Yes

Edist, entropy, ncpf, ncpcm,
poly,

Yes Not often used

Calendar functions no

Command Line Version

1. Edit .gms file
2. Run GAMS
3. View .lst
4. Go back to 1.

IDE

IDE Editor

• Syntax coloring can help detect syntax errors
very early.

• Block commands are often useful

IDE Tricks

• F8 to find matching parenthesis

• Search in files

Project File

• The project file determines where files
(.gms,.lst,.log) are located.

• Start new model by creating new project file
in new directory

Edit,Run,…

• After hitting Run Button (or F9),
process window shows errors

• Clicking red line brings you to
location in .gms file

• Clicking back line bring you to
location in .lst file

• This is only needed for obscure errors

Lst File Window

• Use tree to navigate

• Search for ‘S O L’ to find ‘S O L V E S U M M A R Y’

Debug Models

• Use DISPLAY statements

• Use GDX=xxx on command line

• Then click on blue line

GDX Viewer

Blank means
same as above

GDX Cube

Index positions can be placed:
1. On the plane
2. On the left (row header)
3. On the top (column header)

On the
plane

Column
headers

Row
headers

Generating GDX files

• From command line (gdx=xxx)

• $gdxout (not used much)

• Execute_unload ‘xxx.gdx’,a,b,x;

• Or via some external tool:

– Gdxxrw can create a gdx file from an Excel
spreadsheet

– Mdb2gms can create a gdx file from an Access
database

– Sql2gms can create a gdx file from any sql database

Reading GDX file

• $gdxin

• Execute_load

Set i;
Parameter p(i);

$gdxin a.gdx
$load i
$load p

Display i,p;

Compile time

Execution time

GDX is hub for external I/O

GAMS
MODELgdx

Excel

Excel

Csv

Access gdx
Csv

Etc.

Etc.

Gdxxrw: read xls

