LANGFORD’S PROBLEM

ERWIN KALVELAGEN

ABSTRACT. This documents describes how small instances of Langford’s Prob-
lem can bs solved using Mixed Integer Programming.

1. INTRODUCTION

Langford’s Problem [I] is an interesting theoretical problem. It originated from a
father, being a Scottish mathematician, watching his children playing with colored
blocks. Consider the sequences depicted in figures [1| and

(32 A 3]2]

FIGURE 1. Langford’s problem instance L(2, 3)

[4[E0 3 [2[4[3]2]

FIGURE 2. Langford’s problem instance L(2,4)

Each number occurs two times (hence the 2 in names of the sequences). Be-
tween equal numbers k there are exactly k other numbers. The sequences are
named L(m,n) with m the multiplicity, and n the order of the sequence. Not all
sequences L(m,n) have solutions: there are no instances of L(2,5) and L(2,6).
Both L(2,3) and L(2,4) have exactly one instance (apart from the obvious symme-
try by reversing the sequence). Some sequences have a large number of solutions.
For instance L(2,7) has 26 solutions, and L(2,8) has 150 solutions.

An example of a sequence with triples is L(3,9). A possible solution for this
sequence is:

(1) L(379) = (3’ 4’ 77 97 37 6’ 4’ 8737 57 7’ 47 6797 27 5’ 87 27 77 67 2’ 57 1797 17 8’ 1)

2. A FIRST MODEL

In this section we will try to develop an integer programming model that finds
a sequence L(3,9).

Date: September 20, 2002.

2 ERWIN KALVELAGEN

2.0.1. Model langford.gms. El

$ontext

Langford’s Problem L(3,9)

Erwin Kalvelagen, July 2002

References:

http://www.lclark.edu/ miller/langford.html

$offtext
set n ’number (0..9)’ /n1*n9/;
set m ’each number occurs three times’ /m1*m3/;

alias (n,nn);
alias (m,mm);

set notfirst(m);
notfirst(m)$(ord(m)>1)=yes;

variable x(n,m) ’locations (1..27)°;
x.lo(n,m) = 1;

x.up(n,m) = card(n)*card(m);

binary variable P(n,m,nn,mm) ’Permutation matrix’;

free variable dummy ’objective variable’;

equations
unique(n,m) ’x should be unique’
permutationl(n,m) ’Permutation matrix’
permutation2(n,m) ’Permutation matrix’
triplets(n,m) ’make sure spacing is correct’
objective ’dummy objective function’
summation ’extra constraint’

*
* Permutation matrix makes sure x’s are unique
*

parameter v(n,m);

v(n,m) = ord(n)+card(n)*(ord(m)-1);

display v;
unique(n,m).. x(n,m) =e= sum((nn,mm),P(n,m,nn,mm)*v(nn,mn));
permutationi(n,m).. sum((nn,mm), P(n,m,nn,mm)) =e= 1;

permutation2(n,m).. sum((nn,mm), P(nn,mm,n,m)) =e= 1;

*

* place triples with correct amount of space between them
*

triplets(n,notfirst(m)).. x(n,m) =e= x(n,m-1) + ord(n) + 1;

*

* extra constraint sum x =1 + 2 + ... + 27
*

summation.. sum((n,m), x(n,m)) =e= 0.5%(card(n)*card(m))*(card(n)*card(m)+1);

*
* dummy objective

*

objective.. dummy =e= 0;

$ontext

1http://amsterdamoptimization.com/models/langford.gms

http://amsterdamoptimization.com/models/langford.gms

LANGFORD’S PROBLEM 3

* %

this can be used to test the formulation.
* test solution 347936483574692582762519181
*

parameter solution(n,m) /
n3.ml
n4.ml
n7.ml
n9.ml
n3.m2
né.ml
n4.m2
n8.ml
n3.m3 9
n5.m1 10
n7.m2 11
n4.m3 12
né.m2 13
n9.m2 14
n2.ml 15
n5.m2 16
n8.m2 17
n2.m2 18
n7.m3 19
né.m3 20
n2.m3 21
n5.m3 22
nl.ml 23
n9.m3 24
nl.m2 25
n8.m3 26
nil.m3 27

W ~NO U WN -

/3

x.fx(n,m) = solution(n,m);
$offtext

*

* priorities

*

P.prior(n,m,nn,mm) = 2*card(n)-ord(n)-ord(nn);

*

* write Cplex option file
*

file opt /cplex.opt/;
putclose opt ’mipemphasis 1°/;

model langford /all/;

*
* turn on option file reading and usage of priorities
*

langford.prioropt=1;

langford.optfile=1;

*

* select Cplex as MIP solver
*

option mip=cplex;

option iterlim=100000000;
option reslim=100000;

solve langford minimizing dummy using mip;

option x:0:1:1;
display x.1;

There are some remarks we can make about this model. First note that the
permutation is now a four dimensional structure as the decision variable that must

4 ERWIN KALVELAGEN

be unique, is two dimensional. We can add the constraint > z; = 14+ 2+ -+ +
27. This constraint is automatically valid for an integer solution, but it helps the
optimization algorithm when there are still fractional solutions. We have added
priorities that tell the solver to place first the high numbered triples, as they are
widely spaced, and are difficult to “squeeze in.” Priorities are especially important
when the solver does not receive any good pricing signals, as this model does not
have a proper objective function that can help to distinguish solutions. When
solving this model with Cplex we can add the option mipemphasis 1 (emphasis
on finding a feasible integer solution) as the first integer solution is immediately
(proven) optimal, given the dummy objective function. Note that this also implies
that we don’t have to set an OPTCR value. A simple way to check the solution given
in equation is also provided. It is commented out, but a few simple edits will
enable it.
The solution found with Cplex is as follows:

-——= 132 VARIABLE x.L locatiomns (1..27)
ml m2 m3
ni 23 25 27
n2 18 21 24
n3 3 7 11
n4 10 15 20
nb 2 8 14
né 5 12 19
n7 1 9 17
n8 4 13 22
n9 6 16 26

This is different than the solution mentioned in equation . Indeed, there are
three different solutions for L(3,9).

3. A SECOND MODEL

This is not the only possible formulation (which is a familiar theme). For instance
we can calculate for all combinations (3, j), (¢, j'):

(2) d(i, j,i',j') = a(i, j) — (i, j')

and then require that |d(i, 7,4, j')| > 1 for all (i, j) # (¢',j’). The minimum distance
requirement can be linearized by saying d(i, j,i',j") < =1V d(i,5,7,7’) > 1. This
“or”-constraint can be modeled easily using binary variables §; ;i j:

d(i,j,i',5") > 1 =0 jr o M
d(i,j,i',j) <=1+ Q=685)M

We need to choose an appropriate value for M. The following model implements
this.

3.0.2. Model langford2.gms. E|

$ontext

(3)

Langford’s Problem L(3,9),
alternative formulation

Erwin Kalvelagen, July 2002

References:

thtp ://amsterdaomoptimization.com/models/langford2.gms

http://amsterdaomoptimization.com/models/langford2.gms

LANGFORD’S PROBLEM

http://www.lclark.edu/ miller/langford.html

$offtext

set n ’number (0..9)’ /ni*n9/;
set m ’each number occurs three times’ /ml*m3/;

alias (n,nn);
alias (m,mm);

set notfirst(m);
notfirst(m)$(ord(m)>1)=yes;

integer variable x(n,m) ’locations’;
free variable dist(n,m,nn,mm) ’distance between two locations’;
binary variable delta(n,m,nn,mm) ’used in |distance| >= 1°;

scalar mn ’m times n’;
mn = card(m)*card(n);

x.lo(n,m)=1;
x.up(n,m)=mn;

free variable dummy ’objective variable’;
equations
triplets(n,m) ’make sure spacing is correct’
objective ’dummy objective function’
summation ’extra constraint’
distance ’calculate distances between x(i,j) and x(p,q)’
mindisti ’abs(distance) >= 1°
mindist2 ’abs(distance) >= 1’

* distance measure approach

*

set comb(n,m,nn,mm) ;

comb(n,m,nn,mm) $((ord(n)<>ord(nn)) or (ord(m)<>ord(mm))) = yes;
distance(comb(n,m,nn,mm)).. dist(comb) =e= x(n,m) - x(nn,mm);
mindistl(comb(n,m,nn,mm)).. dist(comb) =g= 1 - delta(comb)*mn;
mindist2(comb(n,m,nn,mm)).. dist(comb) =1= -1 + (1-delta(comb))*mn;

dist.lo(comb) = -mn+1;
dist.up(comb) = mn-1;

*
* place triples

*

triplets(n,notfirst(m)).. x(n,m) =e= x(n,m-1) + ord(n) + 1;

*

* extra constraint

*

summation.. sum((n,m), x(n,m)) =e= 0.5*mn*(mn+1);

*

* dummy objective

*

objective.. dummy =e= 0;

$ontext

*

* this can be used to test the solution

* test solution 347936483574692582762519181
*

6 ERWIN KALVELAGEN

parameter solution(n,m) /
n3.ml
n4.ml
n7.ml
n9.ml
n3.m2
né.ml
n4.m2
n8.ml
n3.m3 9
n5.m1 10
n7.m2 11
n4.m3 12
né.m2 13
n9.m2 14
n2.m1 15
n5.m2 16
n8.m2 17
n2.m2 18
n7.m3 19
né.m3 20
n2.m3 21
n5.m3 22
nl.ml 23
n9.m3 24
nl.m2 25
n8.m3 26
nl.m3 27

W ~NO O WN =

/3

x.fx(n,m) = solution(n,m);
$offtext

x.prior(n,m) = 2*card(n) - 2*ord(n);
delta.prior(n,m,nn,mm) = 2*card(n)-ord(n)-ord(nn);

*

* write Cplex option file
*

file opt /cplex.opt/;
putclose opt ’mipemphasis 1°/;

model langford /all/;

*

* turn on option file reading and usage of priorities
*

langford.prioropt=1;
langford.optfile=1;

*

* select Cplex as MIP solver
*

*option mip=cplex;

option iterlim=1000000;

solve langford minimizing dummy using mip;

display x.1;

The results with Cplex 7.5 are displayed in table[ll In this case the model with
more variables and equations performs better than the smaller model. This is not
unusual in integer programming: it is difficult to predict performance based on the
size of the model.

In [2] a constraint programming approach to solve this problem is discussed.

LANGFORD’S PROBLEM 7

langford.gms | langford2.gms
equations 101 2126
variables 757 1432
discrete variables 729 729
resource usage 370 80
iterations 3182053 258489
nodes 47520 11339

TABLE 1. Results for the Langford problems

REFERENCES

1. C. Dudley Langford, Problem, Mathematical Gazette 42 (1958), 228.
2. Barbara M. Smith, Modelling a permutation problem, Tech. Report 2000.18, University of
Leeds, School of Computer Studies, June 2000.

AMSTERDAM OPTIMIZATION MODELING GROUP LLC, WASHINGTON DC
E-mail address: erwin@amsterdamoptimization.com

	1. Introduction
	2. A first model
	3. A second model
	References

